

www.jetionsolar.com

Open a new era of ultra-high efficiency

Jetion Solar (China) Co., Ltd.

No. 1011, Zhencheng Road, Shengang, Jiangyin, Jiangsu Province 214443, P. R. China

CNBM (Jiangyin) Photoelectric Material Technology Co., Ltd.

New material Industry Park, Huangtu, Jiangyin, Jiangsu Province 214443, P. R. China

窗 0510-86687300

JETION SOLAR

Jeniüs N-HJT technology brochure

JETION SOLAR

A WORLD-CLASS SOLAR PRODUCT MANUFACTURER

As a world-class solar products manufacturer, Jetion Solar specializes in research, development, production, and sales of solar PV products. Since its foundation in 2004, Jetion Solar has accomplished significant achievements which outpaced most of our main competitors in terms of production capacity and in the number of innovative designs. Jeiton Solar upholds its belief that innovation is the key driver behind advancement by pursuing new technologies and higher efficiencies.

In 2014, Jetion Solar joined CNBM (China National Building Materials Group Corporation) to better extend our value chain. So far more than 17 GW Jetion Solar's products have been widely applied in over 60 countries and regions, earning a coveted "Tier 1" rating on BloombergNEF Module Maker Tiering System. And as backed by CNBM, Jetion Solar also provide global EPC service and project financing. Currently, Jetion Solar has an annual production capacity of 4.4 GW of cells, 2.5 GW of modules with 5 manufacturing plants in both domestic and Thailand. Furthermore, there are plans for an additional 2.6 GW of HJT cells. Jetion Solar serves worldwide customers with high-quality products and professional services.

CNBM's Solar Value Chain

From raw materials to project development, CNBM provides the whole PV value chain integration.

PV glass

PV Cell

PV Module

Thin-film Module

Utility/Commercial Project Development

Financing

EPC

Operation & Maintenance

Luoyang Glass	Jetion Solar (China)	AVANCIS	China Triumph International Engineering
CNBM (Yixing) New Energy Resources		CTF SOLAR	CNBM New Energy Engineering (subsidiary of Jetion Solar)
CNBM (Hefei) New Energy Resources			CNBM (Chengdu) Optoelectronic Materials

CNBM (Tongcheng) New Energy Materials

Triumph Photovoltaic Materials

HJT TECHNOLOGY PLATFORM

MAN OF ACTION IN PROMOTING APPLICATIONS

As a world-renowned solar photovoltaic enterprise, Jetion Solar attaches great importance to technology innovations, always adhering to the R & D philosophy of "Commercialize One Generation, Develop One Generation, and Reserve One Generation", and continuously promoting technology iterations and upgrades to provide customers with higher efficiency, higher quality photovoltaic products and better one-stop solutions.

Jetion Solar's stunning R&D team has been deeply involved in solar cell technology for many years, and with the accumulation of technology in silicon-based cells and the spirit of open innovation, significant breakthroughs have been made in exploring passivation technology, carrier selective conduction, metal-semiconductor contact, etc., and the HJT technology was born.

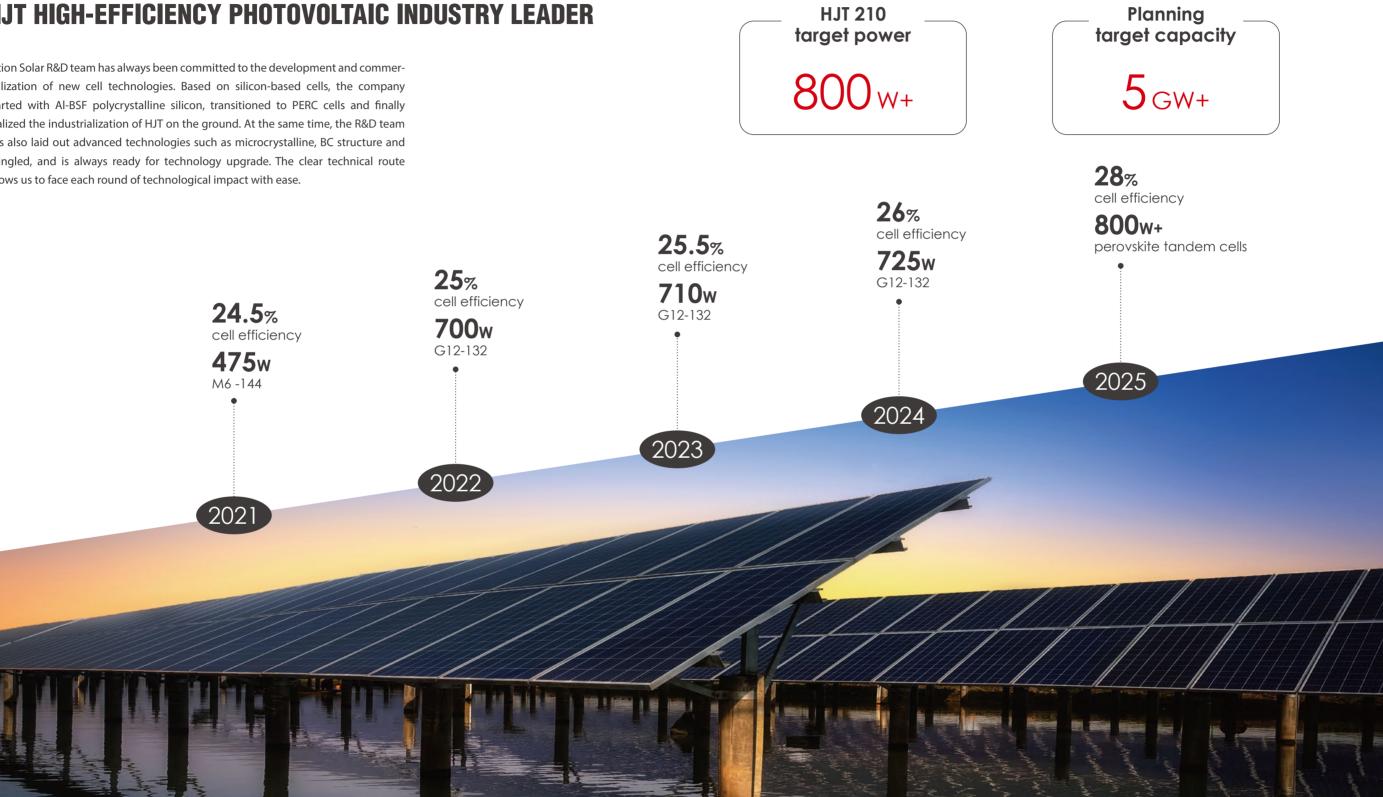
Jetion Solar R&D center is one of the most advanced photovoltaic laboratories in the industry. The laboratory has acquired TÜV SÜD TMP laboratory qualification, CSA WMTC laboratory qualification and China CNAS laboratory accreditation.

EXCELLENT R&D TEAM

PhDs, National 863/973 Project & First HJT industrialization Projects in China

50 + Leading Talents

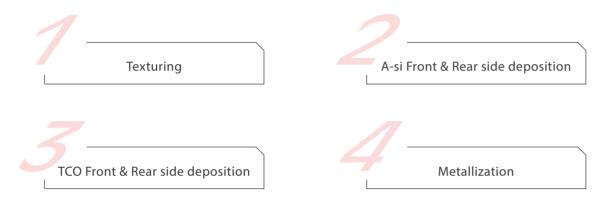
years of experience in the development of photovoltaic technology

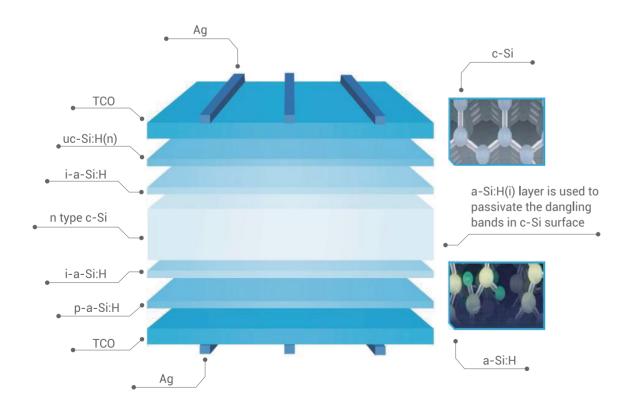

Jetion Solar has obtained more than 280 technology patents.

TECHNOLOGY LEADS THE FUTURE

HJT HIGH-EFFICIENCY PHOTOVOLTAIC INDUSTRY LEADER

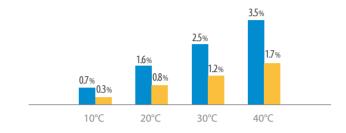
Jetion Solar R&D team has always been committed to the development and commercialization of new cell technologies. Based on silicon-based cells, the company started with Al-BSF polycrystalline silicon, transitioned to PERC cells and finally realized the industrialization of HJT on the ground. At the same time, the R&D team has also laid out advanced technologies such as microcrystalline, BC structure and shingled, and is always ready for technology upgrade. The clear technical route allows us to face each round of technological impact with ease.




HJT 210

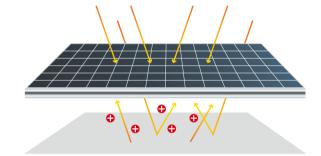
EXTREME INCREASE IN POWER GENERATION

HJT cells offer breakthrough improvements in efficiency and performance compared to traditional PERC technology. In addition, compared to other solar cell technologies, Jetion solar's HJT cell manufacturing requires only four low-temperature process steps, resulting in higher production efficiency and lower losses.


FOUR-STEP PROCESS

O4 Battery technology

Power generation of HJT over PERCPower generation of HJT over TOPCon



Extreme temperature coefficient

HJT cells have extreme temperature coefficients with improved power generation by **2-4%** compared to PERC and **1-2%** compared to TOPCon at high temperatures in summer.

Bifaciality 90%

HJT comes with the fundamental advantage of the highest bifaciality, about **2-4%** higher than bifacial

PERC Sunrise sunset

Excellent low light performance

Extend power generation in low light conditions such as early morning and late afternoon, average daily power generation is approximately **0.5-1%** higher than bifacial PERC.

HJT CELLS

The theoretical efficiency of HJT cells can reach 27.5%, which is one of the highest level of cell technology in the solar industry at present. Jetion Solar has increased the mass production efficiency of the cells through a number of core technologies such as wafer absorption, high cleanliness cleaning, intrinsic amorphous silicon passivation, doped layer microcrystalline silicon, MBB and half cut.

-0.26%/ 0

NO LID&PID

wafer	N-type wafer
Dimension	210×105±0.25mm
thickness	110±20μm
busbars	0BB/12BB/20BB

5.625_W

Maximum power for mass production

26.5%

Maximum efficiency for mass production

-0.27%/K

Temperature Coefficient of Voc (βVoc)

+0.055 %/K

Temperature Coefficient of Isc (alsc)

Higher generation gain

HJT cells can increase module bifaciality to over 90%, ensuring higher power output.

Better power generation

The ultra-low temperature coefficient, excellent low light response, guarantees module power generation performance.

Lower power degradation

HJT modules have the first year power degradation of \leq 1% and the annual power degradation of \leq 0.37%.

06 High efficiency modules

HJT MODULES

Jeniüs N-HJT Bifacial modules

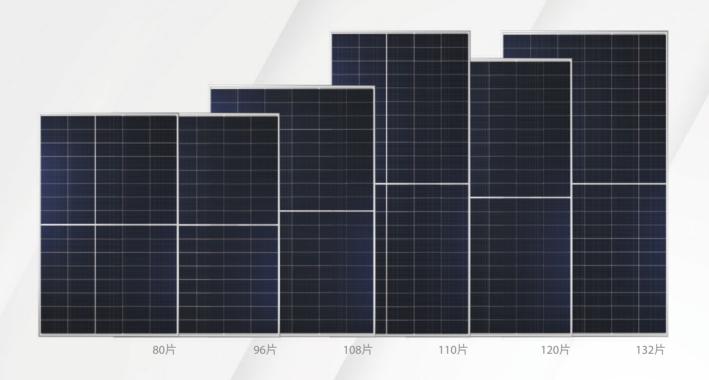
- Non-destructive smooth cutting surfaces with no heat affected areas and low impact on cell efficiency;
- Dual-glass design with front/back loads up to 5400/2400 Pa;
- Low water permeability packaging, high reliability and lower full life cycle degradation rates;
- The extreme increase in efficiency thanks to the application of trans-light technology.

Curved surface packaging technology

 \wedge

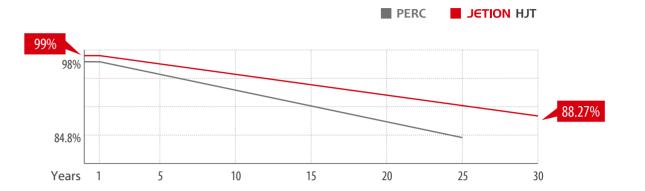
Flexible packaging technology

.


High reliability packaging technology

 \wedge

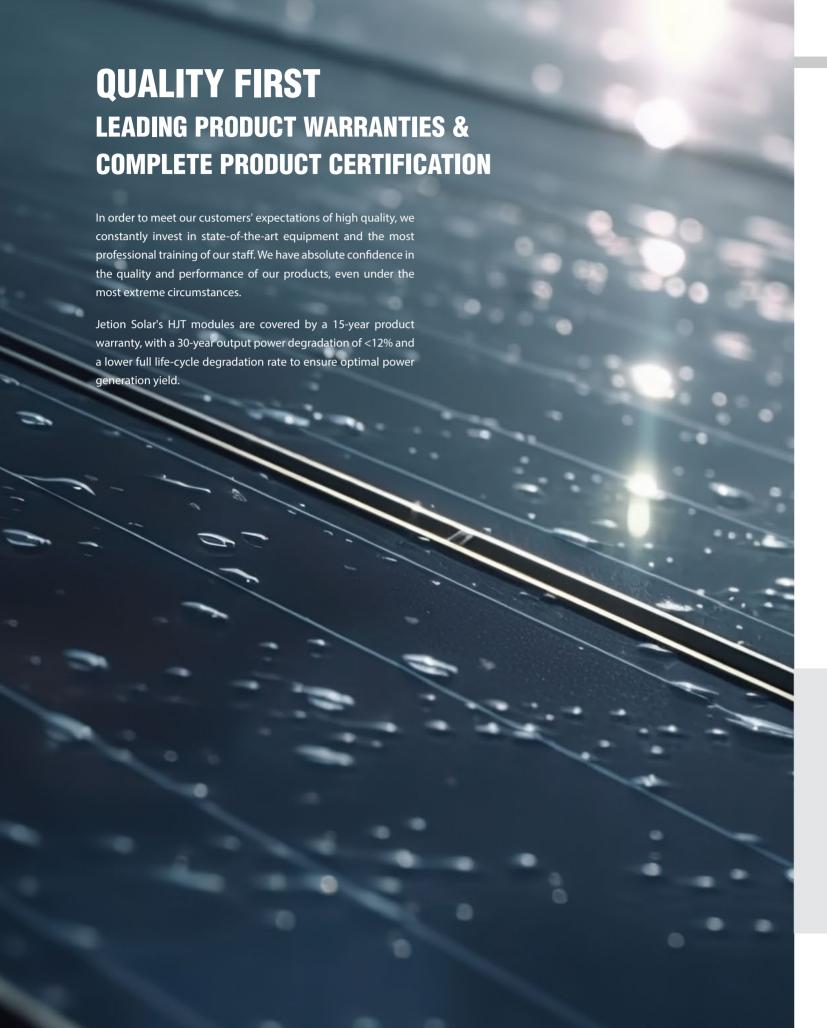
Highly accurate and reliable SMBB stringing technology


 \wedge

Low loss cell cutting technology / half cell technology

	440 _w	525 _w	590 _w	600 _w	650 _w	720 _w
Number of cells	80 [2 x (8 x 5)]	96 [2 x (8 x 6)]	108 [2 x 9x 6)]	110 [2 x (11 x 5)]	120 [2 x (10 x 6)]	132 [2 x (11 x 6)]
Max-efficiency	22.9 %	22.8 %	23.1 %	23.0 %	23.0 %	23.2 %
Dimension	1750×1096×30 mm	1750×1303×35 mm	1961×1303×35 mm	2384×1096×35 mm	2172×1303×35 mm	2384×1303×35 mm
Weight	23 kg	27.4 kg	30.7 kg	32.6 kg	35.3 kg	38.4 kg
Application	Residential & Commercial	Residential & Commercial	Residential & Commercial	Residential & Commercial	Utility	Utility

Jetion Solar has been awarded the following mainstream market certificates:



DISTRIBUTED APPLICATIONS

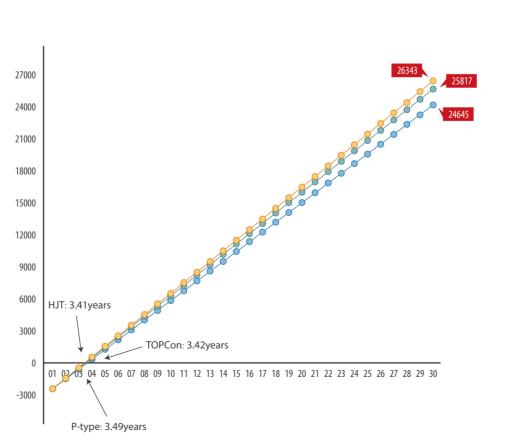
1000KW PV power station (simple model, no discount&loan)

Local peak sunshine hours are 1500h and the system efficiency is 85%, at a tariff of RMB 0.8/kWh (All self-use, or pro-rata conversion).

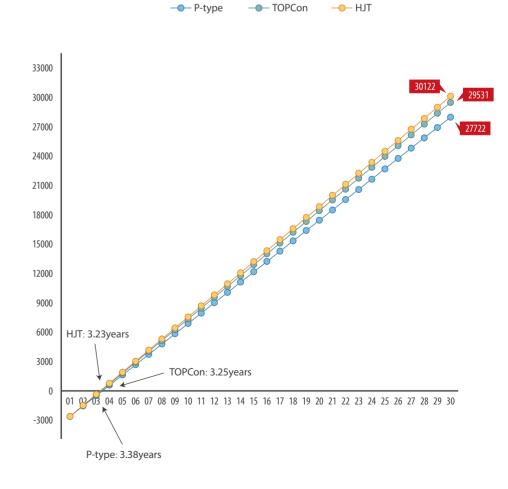
HJT modules are 0.1 RMB/W more expensive than P-type modules and 0.05 RMB/W more expensive than TOPCon, while HJT and TOPCon modules are 0.02 RMB/W cheaper when flat installed on colour steel tiles and 0.04 RMB/W cheaper when installed off the ground with a tilt angle.

Flat roofing installation (poor heat dissipation, high working temperature)

	P-type	TOPCon	НЈТ
Investment per watt (yuan/W)	3.5	3.53	3.58
Total installed capacity (KW)	1000	1000	1000
Total investment (RMB thousand)	3500	3530	3580
First year power generation increased	standard	2%	4%
First year total power generation (kWh)	1275000	1300500	1326000
Payback period (years)	3.49	3.42	3.41
Total revenue (RMB thousand)	24645	25817	26343


With inclination off-ground installation (bifacial power generation)

	P-type	TOPCon	НЈТ
Investment per watt (yuan/W)	3.8	3.81	3.86
Total installed capacity (KW)	1000	1000	1000
Total investment (RMB thousand)	3800	3810	3860
First year power generation increased	standard	4%	6%
First year total power generation (kWh)	1428000	1485120	1513680
Payback period (years)	3.38	3.25	3.23
Total revenue (RMB thousand)	27722	29531	30122

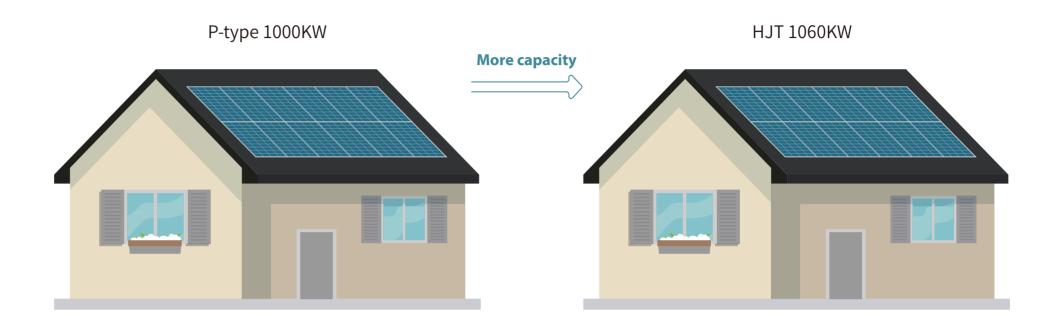

HJT has a small footprint for the same installed capacity, with a fast payback period and high returns

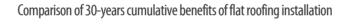
Comparison of 30-year cumulative returns with inclination off-ground installation

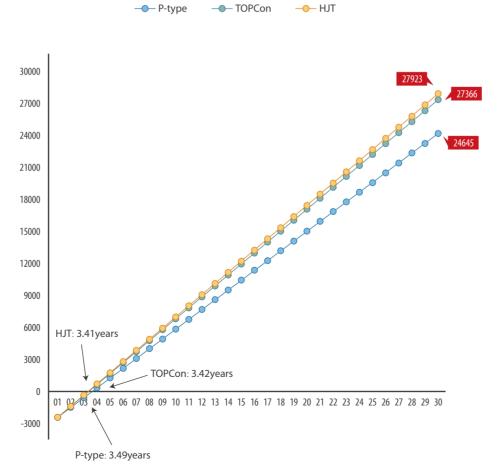
Fixed area rooftop (simple model, no discount&loan)

Local peak sunshine hours are 1500h and the system efficiency is 85%, at a tariff of RMB 0.8/kWh (All self-use, or pro-rata conversion).

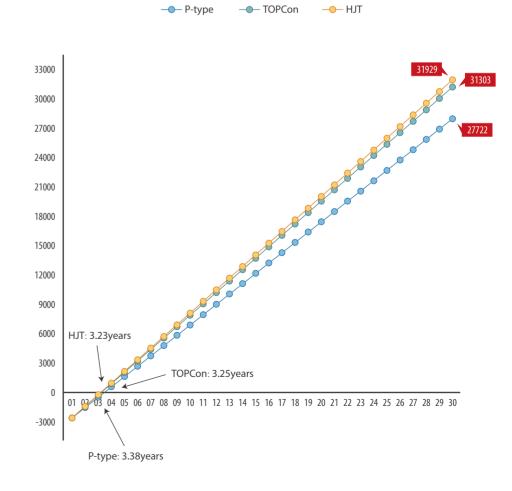
HJT modules are 0.1 RMB/W more expensive than P-type modules and 0.05 RMB/W more expensive than TOPCon, while HJT and TOPCon modules are 0.02 RMB/W cheaper when flat installed on colour steel tiles and 0.04 RMB/W cheaper when installed off the ground with a tilt angle.


Flat roofing installation (poor heat dissipation, high working temperature)


	P-type	TOPCon	НЈТ
Investment per watt (yuan/W)	3.5	3.53	3.58
Total installed capacity (KW)	1000	1060	1060
Total investment (RMB thousand)	3500	3742	3795
First year power generation increased	standard	2%	4%
First year total power generation (kWh)	1275000	1378530	1405560
Payback period (years)	3.49	3.42	3.41
Total revenue (RMB thousand)	24645	27366	27923


With inclination off-ground installation (bifacial power generation)

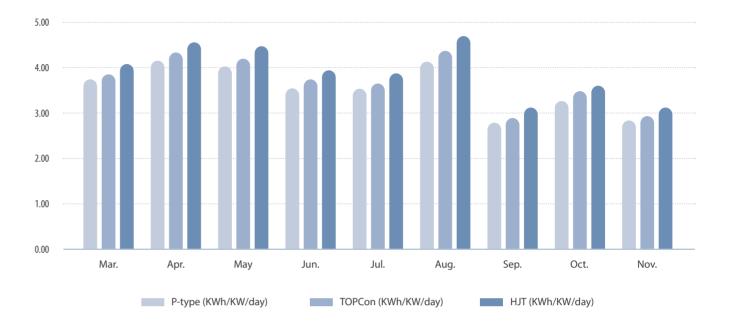
	P-type	TOPCon	НЈТ
Investment per watt (yuan/W)	3.8	3.81	3.86
Total installed capacity (KW)	1000	1060	1060
Total investment (RMB thousand)	3800	4039	4092
First year power generation increased	standard	4%	6%
First year total power generation (kWh)	1428000	1574227	1604500
Payback period (years)	3.38	3.25	3.23
Total revenue (RMB thousand)	27722	31303	31929

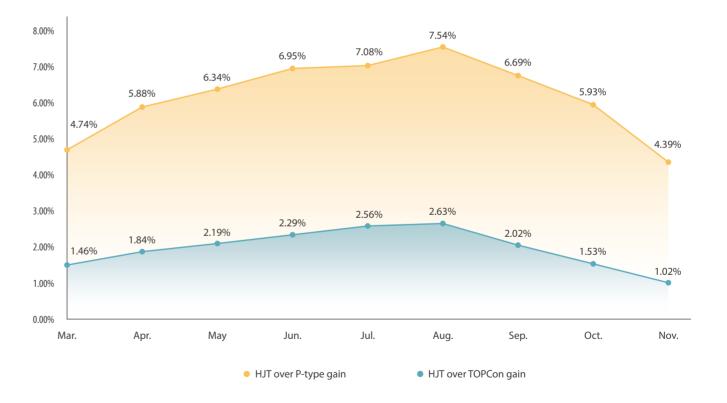

HJT has more installed capacity for the same area, faster payback period and higher returns

 $Comparison \ of \ 30-year \ cumulative \ returns \ with \ inclination \ of f-ground \ installation$

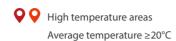
PRACTICE TESTS THE TRUTH

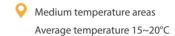
Q Jiangyin, Jiangsu (31°53′ N, 120°10′ E)

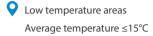

∠ Optimum inclination 23° installation

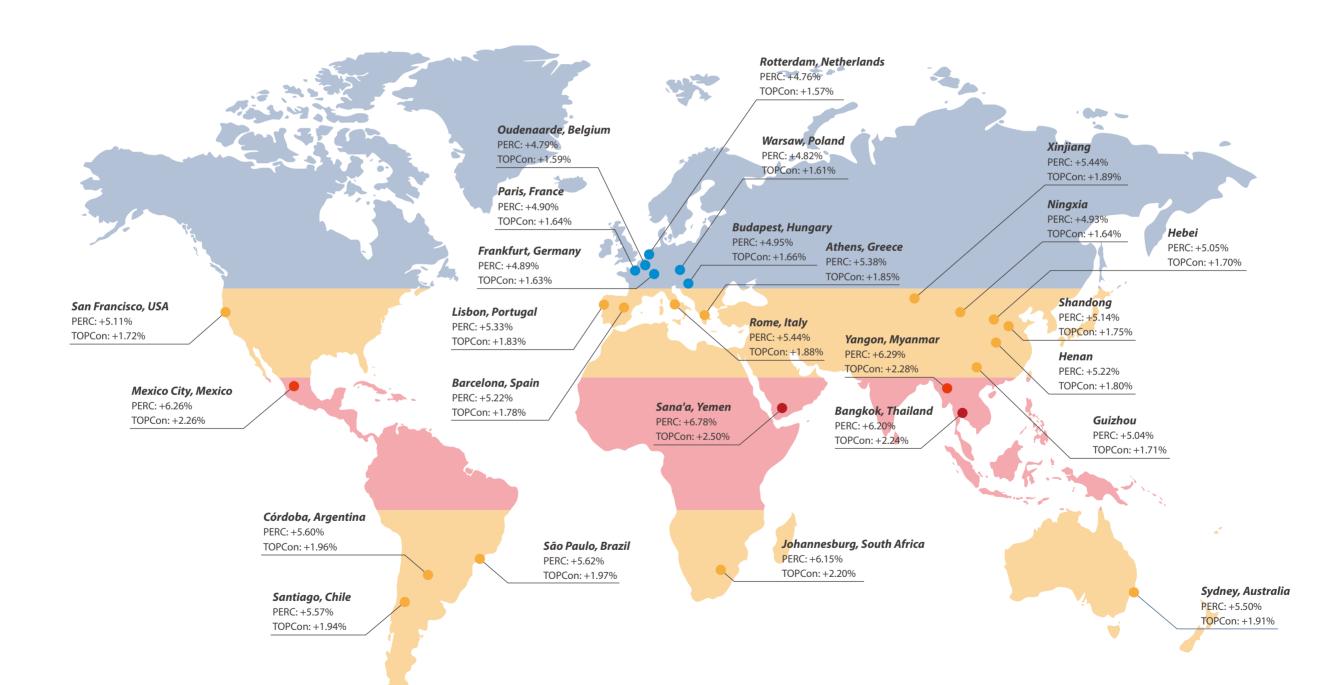

Mar. - Nov.

		TOPCon power generation (kWh/kW/day)	HJT power generation (kWh/kW/day)	HJT over P-type gain	HJT over TOPCon gain
Mar.	3.75	3.90	4.09	4.74%	1.46%
Apr.	4.17	4.34	4.57	5.88%	1.84%
May	4.02	4.20	4.44	6.34%	2.19%
Jun.	3.54	3.74	3.96	6.95%	2.29%
Jul.	3.53	3.70	3.93	7.08%	2.56%
Aug.	4.16	4.37	4.65	7.54%	2.63%
Sep.	2.79	2.93	3.09	6.69%	2.02%
Oct.	3.32	3.47	3.64	5.93%	1.53%
Nov.	2.85	2.96	3.09	4.39%	1.02%




The empirical data shows that HJT generated **6%** more electricity than P-type and **2%** more electricity than TOPCon.


HJT modules have superb power generation gains in all regions of the world and are much higher than PERC and TOPCon modules, with the higher the temperature, the more significant the increase in power generation.


Under comprehensive conditions: HJT improves power generation by **3-7%** compared to PERC modules and **1-3%** compared to TOPCon modules.

Global power generation gains

